
Newton Polynomial

https://wolog.xyz

1. Divided Differences

1.1. Introduction

For any real function g and any nonempty set S of abscissae, we know there uniquely exists a polynomial of degree
at most |S| − 1 that agrees with g at all a ∈ S, and in this article we denote this polynomial as Pg

S(x). Pg
∅(x) is de-

fined to be the zero polynomial for any function g.

Given a real function f , a finite set A of abscissae and an additional abscissa b, suppose P f
A(x) is known and we

want to find P f
A∪{b}(x). To make use of P f

A(x), observe that P f
A∪{b}(x) − P f

A(x) is a polynomial of degree at most
|A| that vanishes at every a ∈ A, so it must be equal to C

a∈A
Π (x − a) for some constant C, whose uniqueness follows

the uniqueness of the polynomial.  That is, there uniquely exists a constant C such that

P f
A∪{b}(x) = P f

A(x) + C
a∈A
Π (x − a)

What remains is to study this constant.

When A = {x0, x1, ⋅⋅⋅, xn−1} and b = xn, this constant is denoted as f [x0, x1, ⋅⋅⋅, xn], and called a divided difference
for a reason that will be shown later. So here comes our definition for divided differences:

• The divided difference f [x0, x1, ⋅⋅⋅, xn] is the unique number satisfying

P f
{x0,x1,⋅⋅⋅,xn}(x) = P f

{x0,x1,⋅⋅⋅,xn−1}(x) + f [x0, x1, ⋅⋅⋅, xn](x − x0)(x − x1)⋅⋅⋅(x − xn−1)

Observe that, on the right-hand side of the equation in this definition, P f
{x0,x1,⋅⋅⋅,xn−1}(x)’s degree is less than n, so the

factor xn can only come from expanding (x − x0)(x − x1)⋅⋅⋅(x − xn−1). This brings us the following characterization:

• f [x0, x1, ⋅⋅⋅, xn] is the coefficient of xn in P f
{x0,x1,⋅⋅⋅,xn}(x)

This characterization shows the symmetry of divided differences: They don’t depend on the order of abscissae.

1.2. A Straightforward & Symmetric Formula

By the characterization of divided differences that we just established, a formula for the coefficient of xn in
P f

{x0,x1,⋅⋅⋅,xn}(x) will be a formula for f [x0, x1, ⋅⋅⋅, xn]. We can use the Lagrange form of the interpolation polynomial,
usually called the Lagrange polynomial, to find it.

For a recap, building blocks of the Lagrange polynomial are

li(x) =
0≤k≤n

k≠i

Π x − xk

xi − xk
, i = 0, 1, ⋅⋅⋅, n

So each li(x) is a polynomial of degree n that, by design, attains 1 at xi but vanishes at all the other abscissae. The
Lagrange polynomial is then constructed as

n

i=0
Σ f (xi)li(x)

which clearly coincides with f (x) at every abscissa.
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Our focus is on the coefficient of xn. xn has the following coefficient in li(x):

1

0≤k≤n
k≠i

Π (xi − xk)

So in total, the coefficient of xn is:

f [x0, x1, ⋅⋅⋅, xn] =
n

i=0
Σ f (xi)

0≤k≤n
k≠i

Π (xi − xk)

1.3. The ‘‘Divided Difference’’ Recurrence Relation

We’ve seen that a polynomial can be extended to pass through an additional data point by adding a term involving a
divided difference. One interesting thing is that adding multiple data points in different orders will produce appar-
ently different polynomials. Suppose the abscissae are x0, x1, ..., xn (n > 0) and P f

{x1,x2,⋅⋅⋅,xn−1}(x) is known. If we
add (x0, f (x0)) first and (xn, f (xn)) next, we have

P f
{x0,x1,⋅⋅⋅,xn}(x) = P f

{x1,x2,⋅⋅⋅,xn−1}(x) + f [x0, x1, ⋅⋅⋅, xn−1](x − x1)(x − x2)⋅⋅⋅(x − xn−1)

+ f [x0, x1, ⋅⋅⋅, xn](x − x0)(x − x1)⋅⋅⋅(x − xn−1)

= P f
{x1,x2,⋅⋅⋅,xn−1}(x) + ( f [x0, x1, ⋅⋅⋅, xn−1] + f [x0, x1, ⋅⋅⋅, xn](x − x0)) (x − x1)(x − x2)⋅⋅⋅(x − xn−1)

But if we add (xn, f (xn)) first and (x0, f (x0)) next, we have

P f
{x0,x1,⋅⋅⋅,xn}(x) = P f

{x1,x2,⋅⋅⋅,xn−1}(x) + f [x1, x2, ⋅⋅⋅, xn](x − x1)(x − x2)⋅⋅⋅(x − xn−1)

+ f [x0, x1, ⋅⋅⋅, xn](x − x1)(x − x2)⋅⋅⋅(x − xn−1)(x − xn)

= P f
{x1,x2,⋅⋅⋅,xn−1}(x) + ( f [x1, x2, ⋅⋅⋅, xn] + f [x0, x1, ⋅⋅⋅, xn](x − xn)) (x − x1)(x − x2)⋅⋅⋅(x − xn−1)

Comparing them, we obtain the following equation:

f [x0, x1, ⋅⋅⋅, xn−1] + f [x0, x1, ⋅⋅⋅, xn](x − x0) = f [x1, x2, ⋅⋅⋅, xn] + f [x0, x1, ⋅⋅⋅, xn](x − xn)

Therefore,

f [x0, x1, ⋅⋅⋅, xn] =
f [x1, x2, ⋅⋅⋅, xn] − f [x0, x1, ⋅⋅⋅, xn−1]

xn − x0

The initial values are f [xi] = f (xi) for i = 0, 1, ⋅⋅⋅, n. This recurrence relation is what divided differences are named
for.1

2. The Newton Polynomial

Knowing how divided differences can be used to extend an interpolation polynomial, now let’s repeat the process to
construct an interpolation polynomial from the ground up. Begin with the zero polynomial and add a term for each
of (x0, f (x0)), (x1, f (x1)), ..., (xn, f (xn)), we end up with

f [x0] + f [x0, x1](x − x0) + ⋅⋅⋅ + f [x0, x1, ⋅⋅⋅, xn](x − x0)(x − x1)⋅⋅⋅(x − xn−1)

This is the Newton form of the interpolation polynomial, conventionally referred to as the Newton polynomial.

The recurrence relation for divided differences provides an efficient method of computing all coefficients in a New-
ton polynomial, as demonstrated in the following tabular form:

1 It is in fact the prevalent definition of divided differences. But I think using it as the definition obfuscates the nature of divided
differences (the same can even be said of using ‘‘divided difference’’ as the name), and typically leads to unintuitive derivations of the
Newton polynomial like the one in the Wikipedia article Newton Polynomial.

https://web.archive.org/web/20240925121936/https://en.wikipedia.org/wiki/Newton_polynomial#Derivation
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x0 f [x0]
f [x1]− f [x0]

x1−x0
= f [x0, x1]

x1 f [x1] f [x1,x2]− f [x0,x1]
x2−x0

= f [x0, x1, x2]
f [x2]− f [x1]

x2−x1
= f [x1, x2] ...

x2 f [x2] ...
...

... ...

Besides the efficiency of construction, the Newton polynomial is efficient to evaluate, as x − x0, (x − x0)(x − x1), ...,
(x − x0)(x − x1)⋅⋅⋅(x − xn−1) can be evaluated successively.

3. An Unusual Application

Interpolation polynomials are commonly thought of as a numerical tool for approximation. But when the function
that’s sampled for data points is itself a polynomial, an interpolation polynomial can match the function exactly pro-
vided enough data points.  Below I will show how this can be useful mathematically.

Let’s consider the sum

Sk(n) = 1k + 2k + ⋅⋅⋅ + nk (k ∈ N)

Here are some well known cases:

1 + 2 + ⋅⋅⋅ + n =
n(n + 1)

2

12 + 22 + ⋅⋅⋅ + n2 =
n(n + 1)(2n + 1)

6

13 + 23 + ⋅⋅⋅ + n3 =
n2(n + 1)2

4

We’re going to find a general formula in a novel way below.

Let p(x) be the polynomial of degree not greater than k + 1 that agrees with Sk(x) at the k + 2 abscissae
0, 1, . . . , k + 1. Consider the polynomial q(x) = p(x) − p(x − 1), which satisfies

• q(n) = p(n) − p(n − 1) = nk for n = 1, 2, ⋅⋅⋅, k + 1.

In the polynomial subtraction p(x) − p(x − 1), xk+1 from p(x) is canceled by expanding (x − 1)k+1 from p(x − 1), so

• q(x)’s degree is not greater than k.

Therefore, q(x) must be the polynomial xk , so

• p(n) − p(n − 1) = q(n) = nk for n ∈ N \ {0}.

It follows that p(n) = 1k + 2k + ⋅⋅⋅ + nk for n ∈ N. So Sk(x) can be equated with an interpolation polynomial of de-
gree not greater than k + 1. By using the Newton polynomial to interpolate, we get the following formula:

Sk(n) =
k+1

i=0
Σ Sk[0, 1, ⋅⋅⋅, i] n(n − 1)⋅⋅⋅(n − i + 1)

The Lagrange polynomial will work as well, but with the Newton polynomial we can make use of the fact that
Sk[n − 1, n] = nk for n = 1, 2, ⋅⋅⋅, k + 1 to avoid evaluating Sk .


